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HW-TakeHomeExam-2 Elasticity and Transformation 
Toughening 
 

Please submit your solutions on Monday November 18, 2019 
This take home carries 25% of the grade. All questions carry equal 
weight. This Exam will cover material taught until, approximately, Wed. 
Nov 13. 
 
 
 

1. In one page draw and/or write three iconic sketches and/or equations 

which you feel embody the subject matter we discussed in class during this 

second phase of the course with a focus on processing. Explain each 

“object” in two lines of text.  

 

2. Consider the reaction for the oxidation of titanium 

 

    (1) Ti(c)+O2 (g)=TiO2 (c)

•The course is divided into the following topics. The topics concentrate 
mostly (but not exclusively) on zirconia as the ceramic material of 
interest.  
 

I. Elastic deformation and fracture 
II. Sintering and Superplastic Forming 
III. Electrochemical applications: fuel cells, batteries, gas 
sensors, gas separation and catalysis 

 
•For each topic you will have practice homework questions which you may 
work on by yourself or with friends. These will not be graded, but I can 
discuss the answers in class (no written solutions). 
 
•At the end of each topic you will have an in-depth take home HW 
(essentially like an exam). You will have ten days to submit your 
answers (e.g. Monday to Friday of the following week).  
 
•Each such take home HW will carry 25% of the grade.  
 
•The remaining 25% will be based upon a 15-20 min presentation on a 
topic of your choice (towards the end of the semester). I will provide 
feedback on your presentations starting in early November so please 
submit your preliminary ppt file by then.  
 

 



where, “c” stands for the pure crystal phases of titanium and its 

oxide, and “g” for pure gas phase of oxygen. 

 

(a) Show that the above equation in equilibrium is expressed by 

 

    (2) 

 

Where “a” stands for the activity of each of the three species.

is the free energy of formation of TiO2 from elements in their standard 

states (as given by their activities being equal to unity); its values 

as a function of temperature are listed in JANAF TABLES. If titanium 

oxide and titanium are chemically pure their activities are equal to 

unity. The activity for oxygen is equal to its partial pressure.  

(Hint: use the equation for equilibrium and  

for each of the species) 

 

2.(a) Show how the above Eq. (2) is used to construct the Ellingham 

diagram for the reaction in Eq. (1) so that it can be read immediately to 

discern the equilibrium value of at any temperature. In your response 

draw sketches with the appropriate axes to explain your thoughts. Explain 

explicitly how the sketches can be read for the equilibrium value of . 

(b) Using the attached Ellingham diagram obtain the values for in 

the form of a numerical equation with approximately linear dependence on 

T(K).  

 

3. Solid State Diffusion is described by the following equation 

 

       (3) 

 

(a) Define each of the above parameters, and give their units. Show that 

Eq. .(3) has balanced units.  

 

(b) You are given that the chemical potential of A may be written as 

 

       (4) 
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where  is the potential in the standard state and  is the molar 

concentration of A in the host material. Show that Eq. (4) when combined 

with Eq. (3) reduces to the Fick’s First Law 

 

        (5) 

 

Make sure you pay attention to the units.  

 

4. The parabolic oxidation equation (for example for the time-dependent 

growth of the silica over-layer, h, during oxidation of silicon, is as 

follows 

 

        (6) 

(a) Obtain the expression for  in terms of the parameters contained in 

Eqns (3) and (5). 

 

(b) Use the data given in the attached manuscript obtain a value for the 

thickness of the overgrowth on silicon over a period of 10 days at 1000 oC. 

 

5. The sintering process is the densification of a porous body assembled 

from particles of the ceramic material. Show how mass transport by solid 

state diffusion can link diffusion on the atomic scale to diffusion flux 

on the particle size scale, and finally to the physical scale of the 

workpiece being sintered.  

 

6. (a) Write half a page on what is surface tension and what is surface 

energy, and what may be the difference between them.  

(b) In the following half page describe an experiment to measure surface 

tension and/or surface energy.  

 

7. (a) Show that the curved surface of a material (it may be glass, or a 

crystalline ceramic) produces an inward “pull” or the surface, given by a 

pseudo hydrostatic tension, but written formally as or normal traction, 

with units of force acting per unit area of surface, by 

 

        (7) 

µA
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h(t)2 = kpt

kp

t
n
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2γS
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where  has a positive value when the force is pulling outwards from the 

“concave” surface with a radius of curvature equal to “r”. Derive Eq. (7)  

using the principle of virtual work.  

 

Calculate the value for  in MPa for a pore of radius 1 µm. Assume that 

Jm–2.  

 

(b) A spherical water droplet experiences a pressure within it which is 

also given by Eq. (7). Show that this pressure increase linearly with the 

surface to volume ratio of the droplet. Calculate this pressure for a 

droplet size (diameter) of 10 µm, 1 µm, and 10 nm.  

 

8. Consider a cylindrical pore formed at the junction of three crystals 

(also in the shape of cylinders) meeting at a triple junction, that is 

oriented 6oo with respect to one another.  

 

Assume that the shape of the pore is in equilibrium so that  

 

        (8) 

where  is the energy (per unit area) for the grain boundary, and  is 

the dihedral angle.  

 

(a) Show in a sketch how and why Eq. (8) is valid.  

 

(b) Explain why the cylindrical pore will grow if , and shrink if 

. 

 

9. Consider the sintering of a bi-crystal containing cylindrical pores, 

parallel to one another, and spaced a distance  apart in the interface 

plane, aligned normal to the plane of the paper. Assume the dihedral angle 

, and the initial radius of the pores to be . Develop the equation 

for the time required for the pores to sinter to make a pore free 

interface based upon Eq. (3), and the relation between the chemical 

potential of the species (in this instance the material itself) on the 

surface of the pores and the normal traction of the surface, , to be 

given by 

 

        (9) 

tn

tn
γS =1

γB = 2γS cosθ

γB θ

θ< 60o

θ< 60o

λ

θ= 45o ro

tn

ΔµA =−tnΩ



 

when the dominant mechanism of mass transport is by boundary diffusion, 

denoted by . In Eq. (9)  is the volume per atom (or molecule) of the 

species. In this instance the gas constant  (units of J mol–1K–1) is 

replaced by the Boltzmann’s constant,  where NAV is the Avogadro’s 

number. Pay attention to units throughout your derivation.  

 

10. Draw an Arrhenius graph of sintering time versus (1/T(K)) for 

sintering of aluminum oxide (alpha phase), with an initial particle size 

of 100nm. Assume grain boundary diffusion to be the dominant mechanism. 

The diffusion data is found at http://engineering.dartmouth.edu/defmech/, 

Chapter 14. Note that the slower of the two (the metal ion and the oxygen 

ion) will control the overall rate of diffusion. Use a temperature range 

of 1200 oC to 1600 oC in your Arrhenius plot. In this plot the horizontal 

scale can be 1000/T(K), with a parallel scale on the top of the grapn in oC 

so that the temperature can be read quickly. Also the vertical scale 

should be log to the base of 10, with tick marks showing 2, 4, 8 etc.  

 

11. By simple arguments show that the effective diffusion coefficient for 

sintering is given by 

 

       (10) 

 

where  is the diffusion coefficient through the crystal matrix,  is 

the effective width of the grain boundary,  is the particle size, and  

is a geometrical factor of order unity (it can be formally shown to be 

equal to “pi”). 
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Chemical Potential-Based Analysis for the Oxidation Kinetics of Si and SiC
Single Crystals

Rishi Raj†

Department of Mechanical Engineering, University of Colorado, Boulder 80309, Colorado

A one-dimensional diffusion problem with prescribed boundary

conditions for the oxygen potential at the oxygen(gas)–silica
and at the silica–substrate interfaces is employed to obtain the

parabolic rate constant for oxidation of Si crystals. The

results, using the data for diffusion and solubility of molecular

oxygen in silica agree reasonably well with the oxidation kinet-
ics results for Si from Deal and Grove (1965). The measure-

ments for SiC crystals (Costello and Tressler, 1985) lie below

these results for Si, even though in both instances, diffusion

through the silica overlayer is expected to have been rate
controlling. This difference is explained in terms of the lower

Si activity at the SiC–SiO2 interface than at the Si–SiO2

interface. The implication of the interface structure is discussed

in an attempt to explain the higher activation energy for
oxidation of the Si-face (0001), than the C-face ð0001Þ of SiC

crystals.

I. Introduction

THE results from the oxidation of silicon crystals studied
by Deal and Grove (D&G1), from 700°C to 1200°C in

dry oxygen ðpO2
¼ 1Þ, are reproduced in Fig. 1. They show

that at high temperatures, the oxidation behavior is predomi-
nantly parabolic, but exhibits a trend toward interface con-
trol in early oxidation. For example, note that the transition
from interface control to diffusion control occurs at a scale
thickness of approximately ~30 nm at 700°C. At higher tem-
peratures, this transition occurs earlier, when the over-
growths are even thinner. The implication is that studies of
the early stages of oxidation are likely to have emphasized
interface-controlled oxidation behavior. Interface-controlled
oxidation, which dominates at lower temperatures in thin
films, is of interest to the microelectronics community.2,3

However, in structural ceramics, where the temperatures are
high and the overgrowths are thick, the diffusion-controlled,
parabolic regime is more important.

The parabolic equation for oxidation is derived by assum-
ing that the growth rate is inversely proportional to the
thickness of the oxide scale. It has usually been explained by
invoking Fick’s law whereby the driving force for the diffu-
sion of oxygen is proportional to the difference in the con-
centration of oxygen at the surface and at the substrate
interface divided by the thickness of the scale. In this
approach, the surface concentration is set to be proportional
to pO2

in the environment, and to a negligible value at the
interface, for example see Ref. [4].

The concentration profiles of molecular oxygen have been
charted by Cawley et al.5 with 18O isotope. They found the
concentration was flat, and low, in the middle of the scale,

but higher both near the surface and at the buried interface.
These findings have been confirmed in later studies, e.g.,6

These measurements are inconsistent with models that rely
on linear concentration gradients through the oxide scales.
Furthermore, the assumption of near zero concentration at
the interface needs to be reconciled with the fact that a sig-
nificant concentration of oxygen molecules must be present
at the interface for silicon to convert to silica at the
measured rates.

The analysis of oxidation must also ask the question
whether the dominant diffusing species is atomic, ionic, or
molecular oxygen. Two main results point toward oxygen
molecules as being the dominant mechanism: (i) the strictly
linear dependence of the parabolic rate on the partial pres-
sure of oxygen ranging from 0.1 to 1.0, at temperatures from
1000°C to 1200°C as reported by D&G in their figure 8,
and (ii) state-of-the-art DFT calculations7 show that 3.4 eV
is needed to disassociate an interstitial O2 molecule into
two interstitial oxygen atoms (the energy to break the
network Si–O bond to form ionic oxygen is even greater),
a value much larger than the activation energy for the
growth of the oxide scale measured by D&G, which was
equal to 119 kJ/mol or 1.23 eV. The activation energy for
diffusion of O2 through seven-membered rings in the silica
network calculated by Stoneham et al.7 is in the range
1.2–1.3 eV (115–123 kJ/mol), consistent with the activation
energies for the growth of the silica overlayer. The relative
values for O2 migration through five- and six-membered
rings were significantly greater than the measured activation
energies.7

Oxidation of silicon-carbide can be expected to be similar
to that of silicon as in both instances, the silica overgrowth
provides the passivation protection. Results from Costello
and Tressler8,9 for single crystals of SiC, replotted in Fig. 2,
conclusively show, similar to silicon, that the rate is para-
bolic in the range 1200°C–1500°C. However, when the para-
bolic rate constants for Si and SiC are compared, as shown
in Fig. 3, two notable features emerge: (i) the rate constant is
significantly slower for SiC, and (ii) the Si- and the C-face of
(0001) orientation of SiC crystals oxidize differently: while
the carbon face has a similar activation energy as D&G, the
silicon face exhibits a significantly higher activation energy,
and lies below the C-face data. This behavior has been a
topic of considerable interest in the literature.10 We seek to
present a hypothesis for this behavior.

The above observations and measurements are coalesced
into a unified model by employing the chemical potential of
O2, written as lO2

, to analyze the oxidation kinetics of Si
and SiC. lO2

is exactly defined at the surface (by the oxygen
partial pressure in the environment), and at the interface
(by the equilibrium between Si and SiO2). It then becomes a
matter of solving a one-dimensional boundary value prob-
lem, which is shown to give agreement with D&G. In the
case of SiC, the interfacial lO2

depends on the activity of
silicon at the interface. We attribute the divergence between
the Si-face and C-face data to the difference in the activity of
silicon at these interfaces.
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II. Oxidation of Silicon Crystals

(1) A Model Based Upon Chemical Potentials of Oxygen
The oxidation of silicon when formulated in terms of the
chemical potential gradients of lO2

becomes a simple bound-
ary value problem where the diffusion flux is given by the
equation:

JO2
¼ � DO2

nO2

VSiO2
RT

dlO2

dz
(1)

Here, DO2
is the chemical diffusion coefficient of O2, nO2

is
the molar concentration of oxygen in silica, and VSiO2

is the
molar volume of silica. The temperature, T, is in Kelvin and
R is the gas constant [8.31 J�(mol�K)�1]. Note that JO2

has
the following units: moles of oxygen flowing across a unit
cross section per unit time (m�2s�1).

The application of Eq. (1) requires a boundary value
problem where the chemical potentials are prescribed at the
interfaces where the oxygen molecules are absorbed or con-
sumed. Within the material, the problem can then be solved

for the time-dependent or for the steady state. In this case,
we assume the steady-state condition that the flux of oxygen
molecules is uniform through the entire thickness of the
oxide scale. This latter condition implicitly means that the
divergence of oxygen flux is zero within the scale, that is,
the oxygen molecules are neither created nor absorbed within
the scale: this can occur only at the boundaries where the
chemical potentials have been prescribed.

In the first instance, we assume that there is no interfacial
barrier either to the insertion of oxygen into the overgrowth
from the atmosphere, or to the reaction of oxygen with silicon
at the buried interface. The gradient of the chemical potential
through the scale is then given by the following equation:

dlO2

dz
¼ � lhO2

� liO2

h
(2)

where lhO2
is the potential at the surface and liO2

at the
substrate–silica interface (the minus sign recognizes that
diffusion occurs in the downhill direction of the potential
gradient). At the surface, the potential is defined by the
partial pressure of oxygen in the atmosphere, phO2

, that is
lhO2

¼ RT ln ðphO2
ÞFor the oxidation of pure silicon, liO2

is
exactly defined by the following reaction:

SiþO2 ¼ SiO2 (3)

which is held in equilibrium at the interface. The law of mass
action gives the following equation:

RT ln
aiSiO2

aiSia
i
O2

þ DGSiO2
¼ 0 (4)

where the superscript i refers to the interface, and a to
the activity of the species. DGSiO2

is the free energy for the
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reaction in Eq. (3).11 In the oxidation of silicon, both silicon
and silica exist in their pure state so that aiSi ¼ aiSiO ¼ 1. With
this substitution, aiO2

, is obtained from Eq. (4). The potential
gradient in Eq. (2) may now be written as follows:

dlO2

dz
¼ �RT

h
ln
phO2

aiO2

(5)

Substituting Eq. (5) in Eq. (1), and recognizing that

dh

dt
¼ JO2

VSiO2
(6)

and further integrating from time, t = 0 to t gives the final
result that

h2 ¼ kpt (7)

where kp, the parabolic rate constant, is given by the follow-
ing equation:

kp ¼ 2DO2
nO2

ln
phO2

aiO2

(8)

Please be reminded that Eq. (8) assumes that there is no
interfacial barrier to the ingress of oxygen into the glass from
the atmosphere, and then again from the glass to its reaction
to produce silica at the interface.

(2) Comparison with Experiment: Oxidation of Silicon
The result in Eq. (8) may be used to compare theory with
experiment. The measurements for kp for the oxidation of sil-
icon single crystal in dry oxygen at 1 atm (phO2

¼ 1) by D&G
up to 1200°C and further up to 1400°C by Costello and

Tressler8 are reproduced in Fig. 4. We now proceed to
compare these values with the prediction from Eq. (8).

The diffusion coefficient in Eq. (1) refers to the transport
of O2 molecules in silica (as the parabolic rate constant has
been unambiguously shown to be proportional to the oxygen
pressure 1). The other possibilities are diffusion of atomic
oxygen, or diffusion of oxygen ions. However, these would
require that the parabolic rate constant is proportional to the
square root of the atmospheric pressure. Diffusion of oxygen
ions would, in addition, require that a compensating charge
of electron or holes be transported faster than the ions to
maintain charge neutrality; the negligible electronic conduc-
tivity of silica makes such a scenario to be untenable.

Furthermore, oxygen atom and oxygen ion transport
mechanisms are incompatible with the measured value for
the activation energy for the parabolic rate constant; this
value lies in the 1.2–1.3 eV range which is far less that would
be required if oxygen atoms or ions were controlling oxygen
transport. These points are discussed in greater detail in
Appendix A.

Diffusion of O2 has been determined by two methods:
measurements of permeability through a glass “membrane”,
and by the use of isotopic 18O2. The permeability measure-
ments are straightforward as the flux is proportional to the
product of the oxygen molecule diffusivity and the concentra-
tion of the species in the glass. The first quantity is obtained
from the steady-state flux, and the second from the relaxa-
tion time to reach the steady state. Measurements by Norton
and Hetherington and Jack belong to this method. The deri-
vation of the permeability equation from Eq. (1) involves an
assumption of a constant activity coefficient. This derivation
is given in Appendix B.

The use of the 18O2 to measure diffusivities requires care as
interstitial molecules can exchange with the oxygen atoms in
the –O–Si–O– network of the glass (imagine placing silica in
pure isotopic gas—gradually all oxygen atoms in the network
will be exchanged with 18O). Therefore, isotope measurements
involve several species: 18O2,

18O, O2, and O where the under-
score refers to the network species. As shown in Appendix A,
the effective value for ðnO2

DO2
Þ in the case where diffusion

occurs additively by both interstitial O2 and by network O is
given by ðDO2

nO2
þ 1

4DOÞ. Also explained in Appendix B is
why the network species are immobile relative to the intersti-
tial molecules, so that the effective diffusion coefficient is still
given by DO2

nO2
, as in Eq. (1). The use of isotope profiles to

obtain diffusion measurements requires great care as the 18O2

can exchange with 18O, even if the network oxygens are rela-
tively immobile. Therefore, isotope profiles will depend on
time and temperature, eventually producing a uniform con-
centration of the isotope when the interstitial and network
oxygens have exchanged to the fullest extent. At intermediate
times, the isotope profiles can be difficult to deconvolute into
the contributions from interstitial isotopes that diffuse, and
the network oxygen isotopes that remain essentially frozen.
When the soaking times in the isotope are short then the pro-
files are likely to reflect interstitial diffusion, but at long times
they will merely give the concentrations of the isotope that
have been incorporated into the network. This ambiguity has
lead to a wide uncertainty in the diffusivities extracted from
isotope profiles, as summarized in.5,6,12 Again, these points
are discussed further in Appendix A.

Here we use measurements by Norton13 and Kajihara
et al.,14 which are summarized in Fig. 5. The data fall within
a reasonably narrow band bounded by a factor of less than
two. Both Norton and Kajihara et al. have measured the dif-
fusion coefficient of molecular oxygen as well as the solubility
of molecular oxygen in silica. Norton’s measurements are
direct having been made from the diffusion of oxygen by
using glass as a permeable membrane. Kajihara et al. have
employed an isotope optical fluorescence method, but were
careful to measure at short times when the exchange with net-
work oxygen had been negligible. Both sets of measurements
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are consistent imparting credibility to the data summarized in
Fig. 5.

The value of nO2
, at one atmosphere oxygen pressure, has

been obtained by Norton13 and Kajihara.14 They fall in the
range of 2 9 1016–3 9 1016 oxygen molecules per cm3 of
silica at one atmospheric pressure of dry oxygen and at
1000°C. Multiplying by the molar volume of silica
(27.27 cm3/mol) and dividing by the Avogadro’s number
gives that nO2

¼ 9:0� 10�7 to 1:4� 10�6. The dissolution of
oxygen into silica is slightly exothermic (with an enthalpy of
about 0.11 eV), but has been found to be essentially tempera-
ture independent above 1000°C (see fig. 5 in Ref. [14]).

It now remains to calculate the value for aiO2
, which is

accomplished via Eq. (4), and is given by the following
equation:

lnðaiO2
Þ ¼ DGSiO2

RT
;

where,11

DGSiO2
¼ �901þ 0:175� T kJ/mol (9)

Substituting from Eq. (9) into Eq. (8), setting phO2
¼ 1 (as

the experiments were carried out in dry oxygen at one atmo-
spheric pressure), and substituting for DO2

from Fig. 5 and
nO2

as given in the preceding paragraph leads to the theoreti-
cal estimate of kp which is compared with experiment in
Fig. 4.

The experimental values for kp are approximately one to
two orders of magnitude slower than the theoretical predic-
tion. This difference is attributed to nO2

being lower under
steady-state flux conditions (during oxidation), than in the
conditions for the diffusion measurements reported in Refs.
[13,14].

The argument for the lower concentration of interstitial
oxygen is based upon the data from Ref. [5] which is adapted
in Fig. 6. These data show the 18O profile in the oxide over-
growth on silicon after being exposed to 18O2 for 3.5 min at
960°C. This time is most likely too short for interstitial oxy-
gen to have exchanged significantly with network oxygen,
and is consistent with the experiments reported by Kajihara
et al.14 (At long times, the concentration becomes uniform as
the interstitial oxygen exchanges completely with the network
oxygen5). At the interfaces, the concentration changes shar-
ply, but is essentially constant in the mid region of the oxide
scale. In the steady state, the concentration and chemical
potential gradients within the scale are determined by the
boundary conditions for the chemical potential of oxygen at

the surface and at the substrate interface. Within the scale
they are defined by the condition that the flux of oxygen
must be uniform. The concentration profile in Fig. 5 suggests
that the flux through the scale is controlled by interface reac-
tions, and is diffusion controlled in the large midsection of
the scale. This finding is consistent with studies where inter-
face control was measured in very thin overgrowths.2,3 (The
assumption that 18O2 would have reached the steady state
quickly in thin layers is not unreasonable as the solubility of
O2 is only 10�6. Thus a small number of O2 will saturate the
silica. Nevertheless, it is well to keep in mind that this is still
an assumption.)

The oxygen concentration in silica cannot exceed the equi-
librium value. The maximum concentration in Fig. 6 can be
assumed to be the equilibrium value. Therefore, in the diffu-
sion-controlled regime, the oxygen concentration is very sig-
nificantly lower. With this factor, the theory and experiment
in Fig. 4 converge into reasonable agreement.

The above argument for the difference between experiment
and prediction is based upon kinetics as O2 concentration in
the silica overlayer controls the flux, as given by Eq. (1). It
is, however, also possible that the thermodynamic force for
oxidation is reduced by the interface reaction, as illustrated
in Fig. 7. As seen on the right-hand figure, the driving force
for diffusion is the total difference in the chemical potential
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Fig. 7. The difference in the chemical potential between the
atmosphere and the substrate, which is the total driving force for
oxidation, is divided between interface reaction, which is independent
of thickness and diffusion, which becomes shallower as the
overgrowth thickens, leading to diffusion controlled oxidation
behavior.
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between the atmospheric and the substrate interface minus
the interfacial drop.

III. Oxidation of SiC Crystals

Similar to silicon, the oxidation of SiC also creates a passiv-
ating oxide scale of silica. However, there is a significant dif-
ference between the oxidation of SiC and of Si. In the case
of Si, the chemical potential of oxygen at the interface is
known since the activity of Si and SiO2 are both unity. How-
ever, for silicon carbide the oxidation reaction is as follows:

SiCþ 3

2
O2 ¼ SiO2 þ CO (10)

The oxygen potential at the interface is still given by
Eq. (4), however, aSi is now determined by the equilibrium
between silicon and carbon:

Siþ C ¼ SiCþ DGSiC (11)

so that

RT ln
aSiC
aSiaC

þ DGSiC ¼ 0 (12)

where aSiC = 1. The values aSi and aC can vary relative to
one another, although their product remains constant. These
values can change with the orientation of the crystal. Also
noteworthy is that the activity of Si in SiC will be necessarily
less than unity as the free energy of formation of SiC is nega-
tive. The oxygen potential at the interface will therefore vary
with the activity of silicon, as in Eq. (4).It is with the above
perspective that we consider the data for the oxidation of
two different orientations of SiC given in Fig. 3, at tempera-

tures up to 1500°C (near and above 1600°C the data in the
literature do not consistently show parabolic behavior,15 pos-
sibly because of the increasing significance of the volatiliza-
tion of oxidation species). The orientations are sketched in
Fig. 7, drawing upon Ref. [16]. The “carbon-face” gives a
higher value for the parabolic rate constant than the “silicon-
face”. Moreover, whereas the activation energy for kCp is
comparable to the oxidation of silicon, kSip possesses a signifi-
cantly higher activation energy.

(1) Orientation-Dependent Activity of Si
The difference between the C- and Si-faces of SiC lies in the
chemistry and coordination of the first monolayer. In the
C-face, each carbon atom on the surface is attached to three
silicon atoms underneath. In the Si-face, the silicon atom is
attached to three carbon atoms. Thus, the ratio of Si:C
atoms is 3:1 at the C-face and 1:3 at the Si-face. It follows
that the activity of Si is higher for the C-face and lower for
the Si-face. In both instances, however, the activity of silicon
is less than one.

Rewriting Eq. (4) after setting aiSiO2
¼ 1, we have that

piO2
¼ 1

aiSi2
e
DGSiO
RT (13)

For a silicon crystal, aiSi2 ¼ 1. In the case of SiC, as discussed
just above, the activities of silicon will be lower and will have
the following trend:

aiSi(Si-face)\aiSi(C-face)\aiSi(Silicon) (14)

and, therefore, from Eq. (13),

piO2
(Si-face)[ piO2

(C-face)[ piO2
(Silicon) (15)

From Eq. (8), it then follows that

kp(Si-face)\kp(C-face)\kp(Silicon) (16)

The argument given above can therefore explain why the
oxidation rate of the Si-face of SiC crystal is slower than the
C-face and why both are slower than the oxidation rate of
silicon crystal.

(2) Activity of Carbon
The result in Eq. (16) remains qualitative because the activity
of Si cannot be calculated without the knowledge of the
activity of C at the interface, as only their product is accessi-
ble from the thermodynamic data.

The activity of carbon is determined by the equilibrium of
the following reaction at the interface:

Cþ 1

2
O2 ¼ CO (17)

The activity of C therefore is determined by the piCO, which
is kinetically established by the diffusion of CO through the
overgrowth out to the atmosphere.

(3) The Effective Diffusion Coefficient
The oxidation rate of SiC is determined by the rate at which
oxygen can diffuse toward the substrate, the rate at which
CO can diffuse out to the atmosphere, and the activity of Si
at the interface. This coupled problem was analyzed in Ref.
[17] for the oxidation of silicon oxycarbide, SiCxOy. It

Oxygen atom

Si-face Si

C
C

C

C-face

Si C
Si

Si

Si

Oxidation

Oxidation

Ox

Ox

OxOxOx

Fig. 8. The chemistry and coordination of the first monolayer on
the C- and Si-faces of SiC. Note the higher Si:C ratio of atoms at
the C-face.
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reduces to oxidation of SiC by setting x ¼ 1; y ¼ 0, leading
to the following expression for the effective diffusion coeffi-
cient† :

Deff ¼ 2
2DO2

nO2
� 32DCOnCO

2DO2
nO2

þ 3
2DCOnCO

(18)

where DCO is the coefficient of chemical diffusion, and nCO is
the solubility of CO in silica. The slower species controls Deff,
for example, if DCOnCO\\DO2

nO2
, then Deff � 3DCOnCO.

(4) Orientation-Dependent Oxidation of SiC Crystals
As seen in Fig. 3, the oxidation kinetics of SiC single crystals
is slower than for silicon. Moreover, the Si-face oxidizes at
a slower rate, and with a higher activation energy than the
C-face. The activation energy for the C-face is similar to that
for the oxidation of Si crystals.

The lower oxidation rate of SiC than Si can be explained
by the lower activity of Si at the interface, as summarized in
Eq. (16). A lower activity of silicon increases the oxygen
potential as given by Eq. (15). The higher oxygen potential
reduces the driving force for the diffusion of oxygen through
the silica overgrowth. The relationship between kp and piO2

is
given by Eq. (8). In this way, it is reasonably well explained
why the oxidation kinetics of the Si-face is lower than of the
C-face and why both are lower than the rate of oxidation of
Si crystal.

The activation energy for the oxidation of the C-face of
SiC is in good agreement with the activation energy for Si,
implying that in this instance the diffusion of oxygen through
the silica overgrowth is rate controlling.

The higher activation energy for the Si-face is more diffi-
cult to explain. First, we must note that if two mechanisms,
one having an activation energy that is higher than the other,
act in series, that is, such that the slower of the two is rate
controlling, then the one with the higher activation energy is
likely to be dominant at low temperatures, and the lower
activation mechanism at higher temperatures. The data in
Fig. 3 show that below 1400°C the C-face oxidizes with a
low activation energy, whereas the Si-face carries a higher
activation energy.

In this problem, the two mechanisms of interest are (i) the
inward diffusion of oxygen, and (ii) the outward diffusion of
CO. Whichever is slower will be rate controlling. From the
discussion just above, and with the recognition that below
1400°C the C-face activation energy agrees with the activa-
tion energy for the oxidation of Si (which is controlled by O2

diffusion), we can argue that the oxidation of the Si-face is
controlled by the outward diffusion of CO.

It is not possible to give a satisfying answer to the ques-
tion why CO diffusion should become rate controlling for
the Si-face. The effective diffusion coefficient, as given by
Eq. (18) would apply equally to both orientations of the SiC
crystal, unless the concentration of O2 or of CO changes with
orientation, which is a difficult argument to support in a con-
crete way. One hypothesis can be that the interface reaction
at the Si-face lowers the concentration of CO in the bulk of
the scale, which renders the rate-controlling mechanism in
Eq. (18) to change from O2 diffusion to CO diffusion.

IV. Discussion

The oxidation kinetics of Si-based substrates is almost
always analyzed by assuming that the flux of oxygen is pro-
portional to the concentration gradient as prescribed by the

Fick’s law. However, the data given in Fig. 6, which has
been confirmed by other investigators, does not support this
approach: the concentration gradients are not evident and
the high concentrations near the interface would require
uphill diffusion.

Here, we consider the kinetics in terms of chemical poten-
tials and chemical diffusion coefficients, which is the usual
way for analyzing the rates of chemical reactions. For exam-
ple, the chemical potential approach can explain spinodal
decomposition where B diffuses uphill toward precipitates
rich in B within a solid solution of B in A.

In terms of chemical potentials, the “boundary value”
problem for silica overgrowth (in quasi steady state) is con-
strained by two conditions: (i) the values of the chemical
potential of O2 at the silica–atmosphere and the silica–
substrate interfaces are fully prescribed, and (ii) a JO2

, the
flux through the thickness of silica overgrowth must remain
constant through the entire thickness. There are two
unknowns in the problem: determination of whether the
transport is diffusion controlled or interface controlled, and
the atomistic mechanism of O2 transport. As has been dis-
cussed in this article, the parabolic behavior confirms diffu-
sion control, and the activation energy points toward
interstitial diffusion of O2. It is reasonable to assume that the
chemical potential assumes a profile as shown in Fig. 7,
where there are drops at the two interfaces to account for
interface reaction and a uniform gradient through the thick-
ness for diffusion according to Eq. (1), with the latter being
rate controlling. Note that a constant value of the flux for a
constant gradient of the potential requires that the concen-
tration through the thickness remains constant, which is
consistent with the data shown in Fig. 6.

It is well to keep in mind that the an equilibrium between
the chemical potential and the concentration within the over-
growth can be enforced only if the material within the
overgrowth can equilibrate with a gas at the corresponding
partial pressure of oxygen, which is clearly not possible.
Therefore, the concentration profile within the overgrowth is
constrained not by equilibrium, but by the condition of a
constant value of JO2

, that is given as follows:

J
ð1Þ
O2

¼ JdiffO2
¼ J

ð2Þ
O2

(19)

where J
ð1Þ
O2

¼ d1k1Dc
ð1Þ
O2

is the interface reaction flux, k1 is the
jump frequency across the interface, d1 is the jump distance
that is the effective width of the interface, and Dcð1ÞO2

is the
concentration difference across the interface. Here, super-
scripts (1) and (2) refer to the atmosphere–silica and the sil-
ica–substrate interfaces, respectively. The middle term, JdiffO2

is
the same as Eq. (1). The concentration profiles must adjust
to meet the condition given by Eq. (19).

As discussed under Introduction, the interface reaction
can be rate controlling in the early stage of oxidation, but
not for thick overgrowths when diffusion control becomes
rate limiting. The analysis in this article centers on this
diffusion-controlled regime.

V. Summary

1. Oxygen diffuses as O2 molecules through the silica
overgrowths.1 The theoretical estimate of the activa-
tion energy based upon the molecules diffusing without
breaking the bonds in the glass network7 is in agree-
ment with the experiment. It follows that oxygen per-
meation depends upon the product of tracer diffusion
coefficient and the solubility of O2 in the glass.

2. The influence of solubility is accounted for by formu-
lating oxygen transport in terms of the chemical poten-
tials of oxygen. In this boundary value problem, the
flux remains constant through the silica overgrowth,
with O2 being inserted and absorbed at the surface

†In Ref. [17] the factor nO2
was erroneously omitted because it was assumed that

oxygen diffuses as a part of the silica network. Instead, oxygen diffuses as an “indepen-
dent” molecular species.
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and at the substrate interface where the chemical
potentials of oxygen are defined.

3. The theoretical estimate of the parabolic rate constant
by the above approach overestimates kp by a factor of
10–100.

4. This discrepancy is explained by the high concentra-
tion gradient of O2 at the interfaces,5 which lowers the
oxygen concentration in the broad diffusion regime
through the thickness of the silica scale. With this cor-
rection, a reasonable agreement between theory and
experiment is possible.

5. The lower rates of oxidation of SiC single crystals can
be explained by the lower activity of Si (than in Si crys-
tal) at the interface. The interface structure of the C-
face and the Si-face of SiC single crystals can explain
why the oxidation rate is slower for the Si-face.

6. The activation energy for the oxidation of the Si-face is
greater than, and diverges increasingly from the lower
activation energy for the C-face at lower temperatures,
suggesting two possible rate-controlling mechanisms
with the slower one being important for the oxidation
of the Si-face. It is hypothesized that the higher activa-
tion energy for the Si-face arises from diffusion (and
solubility) of CO through the silica overgrowth.

Appendix A

18O Measurements and Interactions Between Interstitial O2

and Network O
Diffusion Mechanism(s): Theoretically, oxygen can be

transported through silica as three different species: (i) mole-
cules of O2 that diffuse through the interstitial spaces without
exchanging bonds with the silica network, (ii) as oxygen
atoms, O, that are members of the silica network and
migrate by breaking and making the Si–O bonds in the
network, and (iii) as oxygen ions, O2�, that also migrate
interstitially as an independent species.

All three mechanisms of oxygen transport listed above are
additive, that is, they can be summed to obtain the total oxy-
gen flux through the silica scale.

The transport by O2� may be set aside as it would require
the transport of electrons or Si4+ as well to maintain charge
neutrality. There is little evidence so far to support that the
electronic conductivity or the diffusivity of Si4+ is likely to
be as fast as the diffusion of O2�.

The transport of O2 may now be written as the sum of the
diffusion of interstitial O2 and the network O. Extending
Eq. (1) to include the diffusion of both species we have that

JO2
¼ � DO2

nO2

VSiO2
RT

dlO2

dz
þ 1

2

DO

VSiO2
RT

dlO
dz

� �
(A1.1)

Note that nO = 1 as its molar concentration is unity
(assuming that the network oxygen vacancies are scarce).
The factor of 0.5 in the second term arises because two O
must be transported to achieve the diffusion of one oxygen
molecule. The question then arises as to which of the two
terms is more important for the transport of oxygen.

The fundamental driving force for the diffusion of oxygen
is the difference in the activity of oxygen in the atmosphere
and at the substrate–silica interface. The activity of oxygen
in the atmosphere can be equated to the atmospheric pres-
sure of oxygen where 1 atm is the standard state. Thus, the
atmospheric pressure sets the boundary condition for lO2

at
the silica–gas interface. The activity of oxygen at the sub-
strate interface is determined by the oxidation reaction
between it and oxygen (in the case of silicon carbide, the rel-
ative outward diffusivity of oxygen and carbon monoxide
would determine their relative activities).

When the oxidation is taking place in a quasi steady state,
when interstitial oxygen has reached equilibrium with the net-
work oxygen, the following thermodynamic constraint applies:

lO2
¼ 2lO (A1.2)

which, when substituted in (A1.1) gives the following
equation:

JO2
¼ � 1

4VSiO2
RT

dlO2

dz
4DO2

nO2
þDO

� �
(A1.3)

The activation energy for the oxidation rate, which is pro-
portional to JO2

, depends on the activation energies for
DO2

ðQO2
Þ, for DO(QO), the heat of solution of oxygen mole-

cules into the silica lattice, which, from experiments,14 has
been found to be negligible in the temperature range of inter-
est. Studies from oxidation of silicon1 and of the diffusion of
molecular oxygen through silica13 have consistently shown
that QO2

¼ 110� 130 kJ=mol. Theoretical estimates for QO,
which would be approximately equal to the strength of two
Si–O bonds (in a silica network), predict it to be 400 kJ/mol7

or higher. Experiments with CVD silicon carbide up to
~1550°C18 show that that the activation energy remains
unchanged at ~120 kJ/mol, leading to a reasonable inference
that DO2

is rate controlling in the oxidation of SiC.
(The dominance of the first diffusion term in Eq. (A1.3)

depends not only on the activation energy but also on nO2

which has been measured to be ~10�6.13,14 However, even
with this “weighting factor”, the first term dominates in the
1300°C–1550°C range if the difference between the two acti-
vation energies is 300 kJ/mol or greater.)

18O Isotope Profiles
The activation energy measurements show that oxygen dif-
fuses through the silica overgrowths by interstitial molecules,
with the network oxygen atoms remaining relatively “frozen”.
However, the interstitial oxygen can continue to exchange
with network oxygen as time progresses, even if this process is
slower than the diffusion of molecular interstitial oxygen.

The measurement of oxygen isotope profiles, therefore,
will depend not on the diffusion of interstitial oxygen, but
instead on the rate at which oxygen is incorporated into the
network. After a long period of exposure, especially at high
temperatures, to 18O2 the network will become essentially
saturated with 18O, and its concentration will become uni-
form across the scale thickness: this is indeed what has been
observed.5 At shorter times, the 18O profile is likely to be
determined in a complex way by both the diffusion of O2

and the exchange between interstitial oxygen molecules and
O. The interpretation of these results is, therefore, ambigu-
ous, with several free variables such as the exchange rate
between O2 and O, and the diffusion of interstitial O2. Dur-
ing this transient period, all that can be said is there would
be a correlation between the special concentrations of O2

and O, as the exchange rate will be proportional to these
concentrations. However, careful measurements taken over
times that are short enough to preempt any significant
exchange with network oxygen can lead to credible measure-
ments of the diffusion coefficient.14

Appendix B

Relating Eq. (1) to Measurements of Permeability
Measurements of the steady-state flux of oxygen molecules
through a thin silica “membrane” driven by a pressure
difference on two sides was used by Norton to measure the
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diffusivity of oxygen molecules. The flux varied linearly with
pressure confirming that oxygen was transporting as molecu-
lar species. The basic equation for this measurement can be
written in the following form:

JO2
¼ �c�O2

DO2

dpO2

dz
(A2.1)

where JO2
is the steady-state flux of O2 in #m�2s�1, c�O2

is
the concentration of O2 molecules per unit volume per unit
pressure (e.g., #m�3atm�1, where pressure is measured in
units of atmospheres), DO2

is the diffusivity in units of m2/s,
and ðdpO2

=dzÞ is the pressure gradient in units of atm/m.
The minus sign insures that molecular flow occurs in the
downhill direction of the pressure gradient. The objective of
this exercise was to determine the conditions under which
Eq. (1) reduces to Eq. (A2.1).

We begin by writing Eq. (1) in the following form:

JO2
¼ �DO2

cO2

kBT

dlO2

dz
(A2.2)

here, cO2
is the concentration in units of #m�3, and R has

been replaced by kB to convert moles into #molecules. Recall
that lO2

is the chemical potential of the species O2 in the
glass. Writing it as a function of the molar concentration of
O2, written as xO2

, and the activity coefficient, cO2
:

lO2
¼ loO2

þ kBTlnðcO2
xO2

Þ (A2.3)

where loO2
is the reference potential (e.g., one atmospheric

pressure). Differentiating Eq. (A2.3) and substituting into
Eq. (A2.2) gives the following result:

JO2
¼ �DO2

1þ dlncO2

dlnxO2

� �
dcO2

dz
(A2.4)

where the following substitution has been made:

dxO2

xO2

¼ dcO2

cO2

(A2.5)

as Eq. (A2.5) is written in dimensionless (normalized) form.
It now remains to enforce the equilibrium between the O2

molecules in the gas phase with those dissolved in the solid
according to the following reaction:

Og
2 ¼ O2 þ DGO2

(A2.6)

where DGO2
is the change in free energy when a molecule in

the gas phase is inserted into the solid. By law of mass action
we have that

DGO2
þ kBTln

cO2
xO2

pO2

¼ 0 (A2.7)

where the activity of oxygen in the gas phase is, by conven-
tion for the standard state, equated to the pressure measured
in atmospheres. Recognizing that DGO2

¼ DHO2
� TDSO2

,
where DHO2

is the heat of mixing and DSO2
is the change in

the vibrational entropy of the molecule in the gas and in the
solid, we obtain that

cO2
xO2

¼ pO2
e
DSO2
kB e

� DHO2
kBT (A2.8)

The temperature dependence of the solubility is then given
by the term on the far right. Experiments have shown the

solubility to be nearly temperature independent,14 meaning
that DHO2

’ 0, which leads to the following simplification:

xO2
¼ 1

cO2

e
DSO2
kB

� �
pO2

(A2.9)

Equation (A2.9) states that the solubility of O2 molecules in
the glass will be proportional to pO2

only if the activity coeffi-
cient is independent of concentration. In this case, the terms
within the brackets becomes a constant of proportionality. If
the concentration is defined per unit pressure then it follows
that

cO2
¼ c�O2

pO2
(A2.10)

where c�O2
is the solubility, that is, the number of molecules

per unit volume per unit of atmospheric pressure.
If the activity coefficient is indeed independent of the con-

centration then the term within the brackets in Eq. (A2.4)
reduces to unity. Substituting from Eq. (A2.10), we obtain
the final result that

JO2
¼ �DO2

c�O2

dpO2

dz
(A2.11)

Norton’s experiments measured the diffusion coefficient
and the solubility of oxygen molecules in silica. It is impor-
tant to remember that Eq. (A2.11) is valid only if the activity
coefficient is independent of the concentration, which also
implies that the solubility remains linearly proportional to
the gas pressure.
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