
03C REDOX Reactions Amongst Gaseous Species

We shall consider this reaction amongst gaseous species. Calculate the Partial Pressure where hydrogen, oxygen and water vapor are in equilibrium

Species in the above example are: hydrogen, oxygen and water vapor.

At the hydrogen electrode, oxygen, hydrogen and water vapor exist in equilibrium, that is

$$H_{2} + \frac{1}{2}O_{2} = H_{2}O$$

$$G_{rhs} = G_{lhs}$$

$$\mu_{H_{2}O} = \mu_{H_{2}} + \frac{1}{2}\mu_{O_{2}}$$
(7)

$$\mu_{H_{2}O}^{o} + RT\ell n(p_{H_{2}O}) = \mu_{H_{2}}^{o} + RT\ell n(p_{H_{2}}) + \frac{1}{2} \Big[\mu_{O_{2}}^{o} + RT\ell n(p_{O_{2}}) \Big]$$
(8)

$$(\mu_{H_2O}^o - \mu_{H_2}^o - \frac{1}{2}\mu_{O_2}^o) + RT\ell n \left(\frac{p_{H_2O}}{p_{H_2}p_{O_2}^{1/2}}\right) = 0$$
(9)

$$\Delta G_{H_2O}^o + RT \ell n \left(\frac{p_{H_2O}}{p_{H_2} p_{O_2}^{1/2}} \right) = 0$$
(10)

The left-hand side is tabulated in JANAF tables.

4

Below is an extract from the JANAF Tables for H₂O at 1 bar (atm) (p.1276, 3rd Ed.)

Water, 10 Bar (HgO)

t 15

om

. e.

H201(1.E)

1276

	J K-?mol-?			kJ mol-1			
T/K	C,		G - н ст,н/т	н -н стр	Δ ^t H*	AIG*	Log K
0 100 200	Por a	At P	- 10 bar		- enterina		
298.15	75.313	69.946	69.946	0.	-285.815	-237.125	41.54
300 400	75.314 76.732	70.412 92.173	69.948 72.906	0.139	-285.756	-236.823	41.23 28.85
453.070	79.322 46.063	101.872 181.988	75.740	11.840 - 48.138 -		<> REAL SURK = 10 b	GAS
500	41.002	186.240	85.919	50.160	-244.579	-209.857	21.90
600 700 800 900	38.430 38.527 39.310 40.357 41.517	193.409 199.328 204.517 209.206 213.517	103.261 116.572 127.247 136.097 143.626	54.089 57.927 61.816 65.798 69.891	-245.159 -245.886 -246.618 -247.314 -247.955	-202.623 -195.477 -188.225 -180.884 -173.468	17.64 14.58 12.29 10.49 9.00
1100 1200 1300 1400 1500	42.714 43.900 45.045 46.134 47.155	217.531 221.298 224.858 228.236 231.454	150.164 155.937 161.103 165.778 170.050	74.103 78.434 82.881 87.441 92.106	-248.537 -249.059 -249.524 -249.935 -250.299	-165.990 -158.462 -150.893 -143.291 -135.660	7.88 6.89 6.06 5.34 4.75
1600 1700 1800	48.104 48.981 49.786	234.528 237.471 240.294	173.985 177.633 181.037	96.869 101.724 106.663	-250.620 -250.904 -251.157	-128.007 -120.335 -112.647	4.11 3.69 3.20

2