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04D: Fracture at the Crack Tip 

Background 
Last time we derived the following equations. The first relates the stress intensity factor 
to the tensile uniaxial stress and the "flaw size" and the second relates the critical 
value of the stress intensity factor to the work of fracture per unit area of the crack 
surface.  

 

 

 

A natural implication of these equations is that  is the loading parameter in brittle 
fracture (just as uniaxial stress is in elastic deformation). 

Since fracture must occur by propagation of a crack, and since the work done to propagate 
the crack is embedded in  (and ), these parameters would be related to the fracture 
criterion at the crack tip.  

We shall discuss two types of "fracture mechanisms" at the crack tip - for brittle fracture 
and for small scale deformation and fracture at the crack tip, as in polymers and high 
strength metals.  

 

 

Brittle Fracture 
The concept is to define a criterion for breaking bonds at the crack tip, and applying that 
criterion to the stress felt at the crack tip. Instinctively we know that the stress at the 
crack tip must be related to  but only if all deformation is purely elastic. Elastic 
analysis poses a well-defined problem in elasticity theory, which we expect to give us 
relationships between local stresses and displacements at the crack tip in terms of . 

Here are equations for crack tip stresses and displacements using the coordinates  
where the center point is located at the crack tip. 
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Notes: 

(i) The stresses and 
displacements near the crack 
tip are given in terms of , 
which is the engineering 
parameter for loading the 
crack.  

(ii) When  then 

  

"note a square root 
singularity". However, the 
minimum meaningful length 
scale in the problem is the 
interatomic distance.  

(iii) When  then expect 
that  which is what is 

predicted from the equations 
on the right hand side.  

 

Question: how do I relate the 
equations given here to the 
fracture mechanism for 
brittle fracture, which is 
breaking of bonds at the 
crack tip without any plastic 
deformation? 

Answer: There is a limit to 
the displacement, which is 
equal to the stretch in the 
bonds in front of the crack 
tip, at which point the bond 
breaks. The question is how 

much tensile stress,  can a 

bond sustain before it 
breaks.  

   (1) 

where  is the elastic modulus. 

Let us make physical arguments to get an answer to 
the above equation.  

Note the force displacement curve on the right. It 
rises linearly at first, like spring, but then 
reaches maximum value when the bond breaks, and 
then it declines to zero. Note that the force does 
NOT drop immediately to zero, but rather falls 
gradually down to zero until the bond is totally 
separated.  
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Approximate the force displacement curve by a 
half sine wave.  

Question: what may be the wavelength of this 
sine-wave? 

Answer by asking another question to 
ourselves, that is, how far must atoms move 
away from their neighbor until the 
interaction between them reaches the maximum 
value, i.e. the peak in the sine wave. 

Approximately we say that the force reaches a 
maximum when 

       (2) 

this now becomes the fracture criterion at 

the crack tip. We know that  will scale 
with , and we say the fracture occurs when 
the displacement is some fraction of the 
interatomic spacing, this fraction is written 
as . 

   (2) 

How do we get and experimental assessment of ? 

Well, we measure the fracture stress of IDEAL materials, for example an optical fiber which 

has no flaws and therefore fracture at the critical value of . 

These experiments with near perfect glass fibers give values  

      (3) 

By combining the handwritten equations with Eqn (1), (2) and (3), it is possible to obtain 
an expression for  which can be compared with experiment.  

Expect just from units and scaling that  

       (4) 

Let us build on Eq. (2) from the handwritten results, 

    (5) 

Combining (2) and (5) we obtain the final result, 

; so that 75   (6) 

Let us apply to silica glass: E = 75 GPa, Mol wt. = 60 g/mol, density = 2.65 g/cm3, NA 

=6.03E+23 #/mol: which gives  = 3.35E-10m.  

Substituting into Eq. (6) and taking the limits for  as in Eq. (3), we obtain that: 

0.15 5.16E-01    0.25 8.60E-01  

0.2 6.88E-01     0.3 1.03E+00 
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2 u

here the first column is the value 
for alpha and the second column 
the prediction for KIc in MPa m1/2 

The experimental value for fracture toughness of glass ranges from 0.6 to 0.8 MPa 
m1/2which gives that  is approximately 0.2. α


