
 
 

Lecture Notes from Monday 04/13/202 

Hi-Temp 

Topics 
 

(i) Superplasticity: and example of high temperature deformation 
in ceramics.  

(ii) Mechanism of deformation 
(iii) Solid State Diffusion 

 
 

Superplastic deformation in polycrystalline zirconia 
 
See paper by Wakai et al. (1986), cited below: 
 

Notes: (i) large elongation without necking, strain rates as high as 1 h–1, 
that is strain of 1 (engineering strain of 230%) in one hour.  
 
 

Mechanism of Deformation 
 
Notes: 
(i) The shape of crystals can be changed by transporting atoms from one 
crystal face to another. 
(ii) In a polycrystal all crystals can change their shape in this way so 
that the strain in one grain is also the strain in the whole polycrystal. 
(iii) The role of grain boundaries? 
(iv) Two pathways for diffusion.  
(v) The vacancy mechanism for mass transport through the grain.  
(vi) The form of the diffusion coefficient. 2=6Dt 
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Approach 
 
(i)Unit of mass transport, volume wise, Ω. 
(ii)Calculate the strain from atom by atom transport of mass. Consider a 
stand also single crystal in the shape of a cube, with an edge length, d, 
which becomes the grain size in a polycrystal  
(iii)How does the deformation of a single crystal pertain to the 
deformation of a polycrystal which is an aggregate of many “grains”. The 
interfaces between adjacent grains, called grain boundaries, have a 
special property: that atoms can be absorbed into interfaces, or depleted 
from the interfaces. Why, and how? 
(i), (ii) and (iii) allow us to calculate the strain-rate in the 
polycrystal to the flux of mass transport. These issues are related to the 
geometry of mass transport- it is the mechanism of deformation.  
 
Next class of issues, is related to the mechanism of mass transport in the 
solid state (by diffusion) and also the driving force for mass transport 
induced by the applied stress.  
 
Ultimately by combining the geometry of mechanism with the kinetics and 
the driving force for mass transport we can obtain an equation that 
related the strain rate, to the temperature, the applied stress and the 
microstructure (the grain size the grain boundary behavior). 
 
 

Relationship between Transport of Atoms and Strain in a 
Single Crystal 
 
Consider a single crystal in the shape of a cube: 

(Figure 1) Now we consider 
the etching of atoms from 
faces 2 and 3, and 
depositing those atoms on 
face 1, as shown below. 
 
 
 
(Figure 2) We shall use 𝛀 
as the volume occupied by 
one atom. Therefore the size 

of the atom is given by 

Ω1/3 and the area occupied by the atom on the 
surface is given by 

Ω2/3. 
In the above figure atom layers from face 2 
and face 3, from both sides of the crystal 
are etched and plated on to face 1, as shown 
on the right.  

The strain along “1” is then given by 
 

𝜀1 = 4𝛺1/3
𝑑        (1) 
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While the transverse strains are negative and equal to one half of the 
axial strain so that the sum of the principal strains is zero (the 

constant volume condition), that is 𝜀+ = 𝜀, = − -
+
𝜀-. 

Now we wish to consider if only one or two atoms are etched and moved to 
the “1” face, as shown below 
 
 

(Figure 3) In this instance we move two atoms 
(total) from the transverse faces to the face 
to which we have applied a tensile stress. The 
tensile strain will now be given by Eq. (1) but 
weighted by a factor that is equal to two atoms 
divided by the total number of atoms moved in 
Figure 2. This weighting factor is equal to 
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The denominator in Eq. (2) has the factor 4 represents the four layers 

that were plated on the “1” face, while the factor 
%!

&!/#
 is equal to the 

number of atoms present in the full layer over the surface area of the 
crystal which is equal to 𝑑'. Multiplying the right hand side of Eq. (1) by 
Eq. (2), the weighting factor we obtain the result for the strain arising 
from moving just the two atoms, 
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Note that Eq. (3) can be interpreted generally as follows: the thickness 
of the layers deposited on the transverse face is equal to the volume of 
the material deposited (2Ω), divided by the area on which it is deposited,  
𝑑', as given by the first term on the right hand side. The strain is then 
equal to the thickness of this layer divided by the grain size, as given 
by the second term.  
In summary it is possible to obtain strain by transporting atoms from side 
faced to the face to which a tensile stress has been applied.  
 
 

Relating the Single Crystal Mechanism to a Polycrystal 
 

(Figure 4) The figure on the left 
shows the deformation of a 
polycrystal. Each crystal deforms in 
the manner discussed in the previous 
section, but in a way that is 
compatible with other crystals 
surrounding it. 
The subtle point about the above 
scenario is that grain boundaries 
can serve as the source and the sink 
for atoms, just like the free 
surfaces in the previous discussion.  
Thus we are impelled to consider 
what is the structure of the grain 
boundaries that makes that possible. 
Recent work by high resolution 
transmission electron microscopy has 

grain boundaries



shown that the lattice planes of the adjacent crystals extend up to the 
grain boundary plane as shown in the atomic scale resolution micrograph of 
a grain boundary in aluminum, 
 

The Importance of Ledges in Grain Boundaries 
 

 
(Figure 5) Reference: “Mills MJ, Daw MS, Thomas 
GJ, Cosandey F. High-resolution transmission 
electron microscopy of grain boundaries in 
aluminum and correlation with atomistic 
calculations. Ultramicroscopy. 1992 Mar 
1;40(3):247-57.” 
 
 
 
 
 
 
 
 
 
 
 

 
 
Note the presence of ledges in the boundary. Atoms can be added or removed 
from these ledges to make the crystal grow (along the axial direction) and 
recede (in the transverse direction) producing mechanical strain. The 
following schematics show different structures of the grain boundary 
arising from different degrees of misorientation between the adjacent 
crystals, and also orientation of the plane of the grain boundary. 
 

 
(Figure 6) Notes: (i) Any 
misorientation between the crystals 
will necessarily give rise to ledges 
as the boundary. (ii) The ledges may 
be further apart or closer in as 
contrasted in the bottom two drawings. 
(iii) In the top picture one crystal 
is shown to be flat. However, a change 
in the plane of the boundary can 
introduce ledges in the bottom 
crystal.  
In summary, misorientation between the 
adjacent crystals will produce ledges 

at grain boundaries. 
 

 
Etching and Plating of Atoms at Ledges Leads to Strain 
(at constant volume) 
 
The schematics on the left (on the next page in Fig. 7) show how atoms can 
be etched from the ledges (they are then plated on the adjacent grain 
boundary). 
 
The adjacent crystals move closer to each other if the atoms are etched 
away, and further apart if atoms are inserted into the grain boundary. In 
this way the transport of atoms can produce strain as explained in the 
first example.  
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Figure 7: 
Etching of atoms out of the 
boundary at ledge sites. As 
a result the two crystal 
move closer together as 
rigid bodies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Relationship between Volume of Inserted Atoms and 
Strain 
 
Earlier we had derived the strain from single atoms moving from the 
transverse face to the horizontal face. 
 
Regardless of the structure of the boundary, the thickness of the layer 
deposited in a boundary (or conversely etched from it) will be equal to 
 

Thickness	of	the	Deposited	Layer =
𝑡𝑜𝑎𝑙	𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑎𝑡𝑜𝑚𝑠	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑	𝑖𝑛𝑡𝑜	𝑡ℎ𝑒	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	
𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑎𝑟𝑒𝑎	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑖𝑡𝑒, 𝑤ℎ𝑖𝑐ℎ	𝑖𝑠	𝑒𝑞𝑢𝑎𝑙	𝑡𝑜	𝑑'  

 
Therefore the strain produced by the transport will be equal to the 
thickness, expressed above, divided by the grain size.  
 
The above axiom holds for single atoms (as in Eq. 3), or for many atoms.  
 
Practice Problems:  
 
A polycrystal is assumed to be constructed from simple cubes. Each cube 
contains 106 atoms, that is its volume is this many atoms multiplied by Ω. 
The crystal is pulled in uniaxial tension. Calculate the strain that would 
be produced by the transport of 1000 atoms from every vertical grain 
boundary into the adjacent horizontal grain boundary. 
 
Now assume that the atoms are transported at the rate of 1000 atoms per 
second. What will be the strain rate of the deformation of the 
polycrystal.  
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atoms etched away 
from the grain boundary

rigid body displacement
of the upper crystal by the 
removal of two atoms per 
ledge

atoms etched away from the ledges 
within the grain boundary


