
 
 

Lecture Notes from Monday 04/20/202 

Hi-Temp 

Topics 
 

(i) Deformation mechanism 
(ii) Diffusion Mechanism 
(iii) Description of diffusion: Coefficient of Diffusion 
(iv) Flux of diffusing atoms in response to a driving force 
(v) The gradient of the chemical potential under a uniaxial stress 

as the driving force 
(vi) Derivation of the strain-rate for mass transport by boundary 

diffusion.  

 
(i) The Deformation Mechanism 
 
In the last lecture we discussed how a small crystallite can change its 
shape under uniaxial load, by the moving atoms from one crystal face to 
the orthogonal face. We calculated the strain in terms of the number of 
atoms transported and the grain size (equal to the volume of mass divided 
by d3, where d is the grain size).  
 
The above topic was considered in a “free” single crystal, that is one 
with open surfaces. But we showed that the ledge structure of grain 
boundaries allows them act like surfaces since they atoms can be added to 
etched from the ledges allowing the crystallite, surrounded by other 
crystallite, to change shape in the same manner as a free crystal. 
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The schematic shown just above further expands on the above concept. On 
the left a tensile stress is applied to a polycrystal in the vertical 
direction. The deformation of the polycrystal is fully captured in the 
deformation of one crystal shown in green color, just above. Note that a 
tensile stress is applied across boundary B, but not across A. This bias 
causes atoms to be removed from A and plated into B; the arrows in the 
figures show the path of mass transport.  
 
The right hand figure illustrates how removing the atoms from boundary A 
(the atoms being removed as marked by shaded squares) is accommodated by 
the two crystal moving together as rigid body; this displacement leads to 
transverse strain. By equivalence the atoms deposited on boundary B, also 
at ledged will cause the two crystals to move outwards leading to tensile 
strain in the uniaxial direction.  
 

(ii) The Diffusion Mechanism 
 
For atoms to be transported from A to B, they have to “diffuse” through 
the boundary. There not enough space in the boundary width, written as 

, for the atoms to move will ease. They have to climb over the hurdles, or 
narrow spaced as illustrated in the upper figure just below. 
 

 
 
The mechanism of diffusion is illustrated in the figure just above. This 
figure refers to random motion of the atoms in either direction, which is 
appropriate to describe the fundamental diffusion mechanism. Note that the 

atom moves in jumps, over a distance of about the interatomic spacing,  
. In this instance there is no preferred direction for atom movement, 
therefore, the forward and the backward rate of jumps is equal.  
 
(iii) A General Description of the Coefficient of 
Diffusion  
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We note that the atoms must move in jumps, where each jump involves an 
energy barrier (a hill), as illustrated in the lower figure. What happens 
is that the atom sitting in a comfortable energy well vibrates at a 
frequency known at the Debye frequency (it is approximately 1013 s–1). Now 
an then it jumps over the energy barrier. Therefore, the rate of jumps are 
given by the product of the Debye frequency, , multiplied by the 
probability of jump 

Rate of jumps =  #jumps per second          (1)  

 
D is the diffusion coefficient, equal to the jump distance squared divided  
by 6 (six directions of possibility for jumps), multiplied by the jump 
rate.  
 
The “activation barrier”, is specified by the activation energy,  (J 
mol–1) while , the thermal energy is a product of the gas constant (J 
mol–1K–1) and temperature (K). The units for these parameters are enclosed 
within the brackets. Note that  is a dimensionless quantity (as is 
must be since the exponential can be expanded as a power series). 
 
Now, the diffusion of atoms along the boundary can be shown to be given by 
the diffusion coefficient 
 

      (2) 

 
The diffusion coefficient is the product of the square of the jump 

distance, taken here to be the interatomic spacing , multiplied by the 
rate of jumps. Thus  has units of m2s–1. The factor of 6 in the 
denominator appears because the atoms can jump in any of six possible 
directions (for diffusion in three dimensions), only one of which is in a 
specific direction.  
 
Eq. (2) is phenomenologically written as following 
 

       (3) 
 

 is called the preexponential, it has units of m2s–1.  
 
In the present analysis we are concerned with diffusion along the grain 
boundary (diffusion can also occur through the lattice which we shall 
consider later). For this special case we write Eq. (3) with the following 
notation 

      (4) 
 
Thus the pre-exponential and the activation energy are now specific to 
boundary diffusion. 
 
Data for the diffusion coefficients for many different materials are found 
at the following link 
 
H. J. Frost “Deformation Mechanism Maps” 
https://engineering.dartmouth.edu/defmech/ 
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(iv) Flux of Diffusing Atoms Under a Driving Force 
 
In the above section we considered random motion of atoms by diffusion. 
However under a driving force for the atoms to move in a specific 
direction, the jumps in the forward and backward direction are unequal 
giving rise to a preferred direction of diffusional flux. We specify this 
driving force as a gradient in the chemical potential ( ) of atoms. The 
mechanism of this directional diffusion is described by the schematic 
shown below 
 

  
Please note the following points regarding the above schematic 
 
(i) The driving force for individual atoms jumps, , causes the 

activation barrier for the forward jumps, , to become lower than for 

the backward jumps, . Since the mean value of the activation barrier 

is still , it is clear that 

  

And that  

 

 
Therefore the net probability of forward jumps will be given by 
 

Net forward jump probability = . 

 
Expanding the terms in the brackets in polynomial form and taking the 

first term as a good approximation since usually , we obtain 

Net forward jump probability =     (5)  
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where we have replaced R by kB since we wish to represent the equation on 
a per atom rather then a per mole basis (the Gas Constant is based on per 
mole). Note that the pre-exponential in Eq.(5) is dimensionless.  
 
The driving force for diffusion flux (in a specific direction) is related 
to the driving force, that is, the gradient of the chemical potential in 
that direction. For the problem as hand the driving force which we now 
write a a gradient of the chemical potential is them given by 
 

         (6) 

 
  
The flux equation for diffusion under a driving force (for the present 
case of grain boundary diffusion) is given by 
 

        (7) 
 
Let us check the units in the above equation 
 
  #atoms m–2 s–1 

 
  m2s–1 

  m3atom–1 (that is volume per atom) 
  thermal energy per atom, in J atom–1 

  Chemical potential of the species, i.e. energy pre atom, in J atom–1 

“ ” m (distance) 
 
The units are consistent. Note that atom is also treated as a unit (same 
as mole divided by the Avogadro’s number) 
 
Equation (7) can be used to derive an equation for the strain rate as a 
function of temperature, applied stress and the grain size, as done in the 
next lecture. First we need to show how the difference in the chemical 
potential is related to the applied stress. 
 

(v) The gradient of the chemical potential under a 
uniaxial stress as the driving force 

 
 
The difference in the Gibbs Free energy of the two states is equal to the 
difference in between the chemical potential of the atom in State II where 
it is subjected to a tensile traction, and in State I where it is traction 
free. The difference in the Gibbs Free energy is equal to work that the 
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system can do on the environment in moving from State I to State II. The 
work is negative since the system does work on the surroundings. Therefor 
 

     (8) 

 
The work done is equal to the force exerted on the atom which is equal to 

the stress multiplied by the area of the atom, which is equal to , 

multiplied by the displacement which is equal to . Thus Eq. (8) 
reduces to the following simple result, 
 
       (9) 
 
Now going to the first figure in this lecture, the chemical potential for 
the atoms on boundary B is equal to , while on the A boundary it is 
equal to zero, since the stress is absent.  
 
The driving force for diffusion of atoms from A boundary to the B boundary 
is therefore approximately given by 
 

Driving force =     (10) 

 
Where  on the right hand side is the grain size, while on the left it 
represents the derivative.  
 
We are now ready to use Eq. (7) to obtain an equation for the strain rate 
as a function of “laboratory” variables, i.e. the temperature, the applied 
stress and the grain size.   
 

(vi) Strain Rate by Boundary Diffusion 
 
Nomenclature: 
 

 the rate of the volume of atoms transported into the grain boundary 
associated with one grain 
 

 is the rate of the number of atoms transported so that   
 

 is the grain size.. the surface area of one grain is , and the strain 
associated with mass insertion (at one boundary of the grain) is the 
thickness of the plated layer divided by the grain size.  
 
 is the effective diffusion distance from interface A to interface B 

 

 is the gradient of the chemical potential between boundary A and 

boundary B 
 
 the uniaxial tensile stress 

 
 volume occupied in the crystal by one atom (think of cubes, each 

belonging to one atom) which are stacked together to form the crystal. 
 

 the thermal energy per atom, where kB is the Boltzmann’s constant 
 
 temperature in K 
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 coefficient of grain boundary diffusion 

 
 is the effective width of the boundary through which the atoms are 

transported 
 
 strain rate in units of s–1 

 
 is the diffusional flux of atoms in units of atoms cross-sectional-

area–1 second–1 
 
 

  

 

The  will be the product of , times the cross-section for transport, 
, times the volume per atom.  

 

  

 
Thickness of the plated layer at boundary B, by dividing the volume 
deposited on one crystal face divided by the area of the crystal face 
 
 

  

 
Therefore the strain rate 
 

     (22.1) (April 22)   

 
 
The above model can be tested in the laboratory since it relates the 
strain to experimental parameters, the stress, the temperature (through 
the diffusion coefficient) and the grain size.  
 
(i) Measure the activation energy and compare with the general value for 
the activation energy for a given material (as in the Frost website). We 
do this by measuring the strain rate as a function of temperature at the 
same stress… and then make an Arrhenius plot to get .  

 
(ii) Note that the strain rate is directly proportional to the applied 
stress… this linear relationship is characteristic of viscous flow.  
 
The viscosity from Eq. (Result) is now given by  
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If we let  then we essentially have an amorphous structure and we 
are calculating the viscosity of such a material (fluids or silica) 
 

 

 
The viscosity of fluids or amorphous materials is given by the Stokes 
Einstein equation is given by 
 
 

 

 
The linear viscous relationship in diffusional creep bestows superplastic 
deformation properties to the polycrystal.  
 
(iii) The strain is very sensitive to the grain size.. it is proportional 

to . So if the grain size can be reduced from 1 micrometer to 0.1 
micrometer then the strain rate can be enhanced by three orders of 
magnitude.  
 
 
Practice HW Problems 
 
I. Write a one page essay (about 200 words) on what you have learnt about 
the relationship between diffusion of atoms in the solid state and high 
temperature deformation of polycrystals. You can write your answer as a 
sequence of points marked as (i), (ii), (iii) etc.  
 
II. Give a short answer as to why the thickness of the layer deposited at 
a grain boundary depends only on the volume of the mass transported into 
it, and the grain size, so that it is independent of the density of the 
ledges in the grain boundary. 
 
III. It is to be expected the  the activation energy for grain boundary 

diffusion is likely to be related to the enthalpy of melting of the 
crystalline material. Can you give an estimate for the ratio of these two 
quantities? 
 
(iv) Please look at the website mentioned just after Eq. (4). Look up the 
activation energy for grain boundary diffusion for aluminum, and relate it 
to the heat of melting for this metal.  
 
H. J. Frost “Deformation Mechanism Maps” 
https://engineering.dartmouth.edu/defmech/ 
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