
 
 

Lecture Notes from Monday 04/22/202 

Hi-Temp 

Topics 
 

(i) The mechanism for Volume Diffusion 
(ii) The Coefficient of Volume Diffusion 
(iii) Strain rate by Volume Diffusion 

 
 

(i) The Mechanism of Volume diffusion 
 
 
Notable differences between boundary and lattice diffusion 
 
(i) The coefficient for volume diffusion will be slower since it is more 
difficult for atoms to make jumps since the atoms are tightly packed 
within the crystal. The activation barrier to diffusion will be greater in 
volume diffusion. 
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(ii) The cross section for boundary diffusion was determined by the 
effective width of the grain boundary, i.e. , while the cross section 

for volume diffusion is much greater and determined by the grain size, . 
The total cross section for diffusion taking into account the 

perpendicular dimension will be  and , for boundary and volume 

diffusion.  
  
 
(ii) The Coefficient of Volume Diffusion 
 
The derivation for the coefficient of volume diffusion 
 

 m2s–1 

 
is similar to the case of boundary diffusion except for the activation 
barrier for atom jumps, which as shown above is very large. 
 
 
Crystals contain within them vacant sites that exist in thermodynamic 
equilibrium (stabilized by their entropy). The equilibrium concentration 
of vacancies is given by 
 

  
 
where  is the molar concentration of vacancies, and is the 
enthalpy of formation of vacancies (per mole) 
 
 
 It is easier for atoms to jump into an adjacent vacancy 
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However, the jumps become possible if the atom can jump into an adjacent 
atom site which is vacant (occupied by a vacancy). Therefore the 
coefficient of volume diffusion is described by 
 

  
 
The exponential term is the probability of an atom being able to jump into 
an adjacent vacant site, and , equal to the molar concentration of 
vacancies, is the probability of finding a vacancy next to the atom which 
makes the jump.  
 
The Equation above can be expressed as 
 
 

 
 
Where 
 

  
 
For our purposes the phenomenological equation above is enough.  
 

(iii) Strain Rate by Volume diffusion 
 
 
 

 
As seen on the left there are two 
pathways to transport atoms from face B 
to face A: (i) boundary diffusion 
travelling through the thickness of the 
boundary, and (ii) lattice or volume 
diffusion where mass travel through the 
crystalline grain matrix.  
 
Other than the above distinction between 
the boundary diffusion and volume 
diffusion mechanisms, the physics of 
diffusion induced strain rate is the 
same.  
 
So, we ask what will change in the strain 
rate equation we had derived for the 
boundary diffusion case, which is 
repeated below 
 

             (22.1) 

 
It is now “intuitively obvious” that the main difference between the two 
pathways is the magnitude of the coefficient of diffusion, differentiated 
by  and , and, also by the cross section available to the flux of 

atoms from A face to the B face. This cross section for boundary diffusion 
is the slab of the interface layer with a cross section of , where the 

boundary width is shown in the figure and  is the broadside of the slab, 
normal to the plane of the paper.   
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The cross section for volume diffusion is given, approximately, by , 

where  is the approximate scale seen in the figure and  as for the 
case of boundaru diffusion is the other dimension of the cross section 
normal to the plane of the paper.  
 
We may now draw an equivalence between the boundary and volume diffusion 
mechanisms by taking the product of the coefficient of diffusion and the 
cross section of diffusion. The argument is that the diffusion flux is 
given by  
 

 
Is is proportional to the coefficient of diffusion, and the total 
transport is equal to the product of the flux and the cross sectional area 
for diffusion. Therefore we assert that 
 

  for boundary diffusion is equivalent to  

 

  for volume diffusion.  

 
Therefore the strain rate for volume diffusion can be drawn from Eq. 
(22.2) just above by making this subtitution 
 

 

 
With the final result that 
 

      (22.2) 

 
A comparison between the equation for boundary diffusion and volume 
diffusion predicts that 
 
(i) The activation energy for diffusion will change 
(ii) The linear relationship between stress and strain rate is retained 
(iii) The boundary diffusion mechanism is more sensitive to the grain size 

( ) than the volume diffusion mechanism ( ) 
 
 
Equations (22.1) and (22.2) can be used to anticipate how the dominant 
mechanism will change with temperature and the grain size. This effect can 
be seen by plotting the log of the strain rate against (1/T) – an 
Arrhenius plot for the two mechanisms -since volume diffusion has a 
significantly higher activation energy, you will find that volume 
diffusion will dominate at higher temperatures, and boundary diffusion 
will prevail at the lower temperatures.  
 
Similarly, a lot of the log of the strain rate vs. the log of the grain 
size will show that the smaller grain size promotes the dominance of 
boundary diffusion. This is important since it asks that superplastic 
deformation is more likely to be viable with a small grain size.  
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