
 
 

24: Strain rate Equation for Steady State Creep 
 

Flow Chart 
•Describe the geometrical relationship between the movement of atoms and strain (Lect 22) 

––––> 

 
•Consider the rate of movement of atoms by diffusion (Lect 23) 

––––> 

•Describe the equations the prescribe the influence of applied stress to the diffusion flux (Lect 24) 

––––> 

Where we wish to arrive: 

    (1) 

 is the uniaxial stress  
  is the grain size 

 is the pre-exponential for the diffusion coefficient 

  is the activation energy for overcoming the energy barrier for atom jumps. 

Separation of Variables in Eq. (1) 
Note how the variables in Eq. (1) are separated into different entities, that is, the grain size dependence does not 
influence temperature dependence, or the stress dependence does not influence grain size dependence etc.  
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***Bridging Length Scales***  



For example, consider the data on superplastic deformation of 
zirconia we discussed at the start of the topic of Deformation 
at High Temperature. It shows how the strain rate varies with 
stress at different temperatures. Let us consider how we can 
obtain values for the stress exponent, , and the activation 
energy  from these data, applying equation 

 

•For example to obtain the stress exponent consider the slope 
of the lines (for a given temperature) on this log-log plot. In 
the log10 scale a factor of ten becomes one unit length. As 
drawn in the pink lines the slope is a bit less than n=2 since 
the slope in the figure shows that the strain rate changes by 
two orders of magnitude for one magnitude change in the 
stress. The data have a slightly lower slope than n=2, but it is 
greater than n=1, so . 
 
Let us now consider how to obtain a value for  from the 
temperature dependence of the strain rate at a constant stress 
as shown in "blue". 
The data are plotted in an "Arrhenius" plot as shown below 
where the logarithm of strain rate is plotted against (1/T), 
which as prescribed by the expanded equation written just 
above would result in a straight line such that the slope will 
yield the value of QV. The procedure is laid out graphically in 
the schematic given just below, 
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Now let us derive the equation for the strain rate 
 
We are seeking to derive an equation of the following form 

 

where are paramters were described at the start of the lecture. The mechanism that we wish to invoke is given described 
in the figure given just below 

  
 
 
We start with the equation for the diffusional flux (in units of atoms flowing m–2 s–1. 
 

 m2s–1   (*) 

note that the gradient of the chemical potential which drives the atoms from the side faces to the "normal" faces is 

given by , because the diffusion distance which gives the gradient is (d/2) 

Steps to construct a strain rate equation from above are described starting on the following page. 
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n=1 
DV is the diffusion coefficient 
d2 for the grain size dependence.  

  

in fluids the viscosity is related to the diffusion coefficient 

     

The lower bound for the grain size is one atom which has a size of  ; note how this derivation recovers the Stokes 
Einstein Equation that relates viscosity to the diffusion coefficient which we discussed at the start of the lecture on 
Diffusion.  
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 flux of atoms flowing from side to the normal face in units of #atoms m–2s–1 
 

 The total number of atoms being transported from the side to the vertical 
faces=   

is the volume of atom flowing into the vertical faces=   

 

 is the thickening of the grain size in the vertical direction   

 is the strain being imposed on the grain    
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