HW07: Questions related Elastic Constants of Composites

1.

Give physical arguments to show that the directional graphite fiber reinforced polymer composite has four independent elastic constants.

2.

In class you have seen the derivation for the Young's Modulus of a unidirectional composite made from aligned graphite fibers and a polymer matrix (GFRP) in the axial direction with the following result

$$E_{comp} = v_f E_{fiber} + (1 - v_f) E_{polyme}$$

Why is the following a good approximation

$$E_{comp} \approx v_f E_{fiber}$$

Consider the modulus vs density plots in the "map" on the next page. Using this data obtain a reasonable value for the volume fraction of fibers in the GFRP composites.

3.

Derive an expression for the elastic modulus of the above composite in the transverse direction. First draw a schematic of the cross section.

4.

Show that the volume fraction of the fibers in the composite is equal to the area fraction of the fibers as seen in a crosssection.

5.

Using the data given on the map, and assuming the GFRP to be uniaxial composites, obtain an approximate, or a range of values for the volume fraction of the fibers in the composite.

